Connect with us

Health

10 Ways You Can Increase Dopamine Levels In The Brain Without Medication

Published

on

“Dopamine is a neurotransmitter that helps control the brain’s reward and pleasure centers. Dopamine also helps regulate movement and emotional response, and it enables us not only to see rewards, but to take action to move toward them.”  

advertisement - learn more

Psychology Today

There are a lot of articles on the internet about dopamine and how it affects your mood, behaviour, energy, and focus. What’s not commonly spoken about, however, is how dopamine is affected by your perception. Discussed more rarely still is the reason why your dopamine levels may be low. Below are 10 ways to increase your dopamine levels, courtesy of Power of Positivity, as well as my own observations regarding the underlying issues which may have led to each situation and how to tackle them.

1. Don’t Get Addicted

“Many people get addicted to something because it gives them some kind of instant gratification – drugs, alcohol, sex, pornography, shopping, and other addictive behaviors actually have the opposite effect on dopamine levels in the long-term. In essence, when we get overly addicted to something, the ‘reward circuitry’ of our brain kicks into overdrive and we crave the ‘quick hit.’ This is not a sustainable solution for dopamine production, which can and should be done naturally.” 

What’s missing here is the fact that addiction is quite often a result of low dopamine, meaning addiction is more of an attempt to fix an already existing problem. In essence, “the underpinning of your addictive personality is a lack of fulfillment from within, with a resulting urge to achieve fulfillment through substances, objects, or events that relieve the inevitable pain – for a while.” (source)

“When we receive a reward of any kind, dopamine is released in our brains. Over time, this stimulus and release of dopamine can lead to learning. Researchers have recently found that how quickly and permanently we learn things relates directly to how much dopamine we have available in our brains. As we get rewarded over and over again for something, we learn that we should keep doing whatever that is very deeply, and it’s hard to unlearn those kinds of behaviours.” (source)

advertisement - learn more

What this means is that low dopamine is a response to a lifestyle that doesn’t offer much in terms of reward to the person living it. It may be a response to the environment you’re living in, the clothes you’re wearing, the tight budget you’re working within, the relationship choices you’ve made or have been made for you, or a result of trauma where there was no perceived reward. It’s very easy to understand how dopamine levels may appear low when we consider all the potentials leading to less rewarding lifestyles and life experiences.

What’s necessary, then, is less of a ‘don’t get addicted’ approach and more of an ‘increase the rewards in your life’ style of applied advice. The fact is, you’ll constantly feel less fulfilled through low dopamine when you’re not (or are unable to) fill your day with things that inspire and reward you. What this means is, the most effective protection against addiction and the greatest advantage to high dopamine levels is a defense against low-rewarding activities and an offence of rewarding actions, activities, and ultimately, a lifestyle of fulfillment and achievement.

Also, because addiction is most often rooted in past traumatic experiences, where emotions create a fight-or-flight response that becomes rooted in your core emotions, it’s vitally important to seek proper and effective help in dissolving past trauma. Doing so can only help you perceive more rewarding experiences in your life, rather than filtering experiences through a ‘traumatized’ awareness.

2. Checklist Small Tasks

“Dopamine increases when we are organized and finish tasks – regardless if the task is small or large. So, don’t allow your brain to worry about things that need to be done. Instead, write these tasks down and then check them off one at a time. It’s been shown that it’s more satisfying to the brain’s dopamine levels when we physically check something off of our to-do list. Also, write down and check stuff off regardless if you can mentally remember the tasks.” 

While reading the book Principles of Self-ManagementI came across a brilliantly well-researched understanding of motivation when it comes to tasks. In short, if a task is greater than 25% of a change in a person’s routine, the person will be overwhelmed and feel incapable of achieving it. This leads them to self-defeat and self-sabotage to avoid accomplishing the task. On the other side, if a task is less than 10% different from a person’s normal routine, they won’t do it because it won’t have enough meaning for them to do so. As such, it’s wise to make sure you write down goals and tasks that are in between this 10-25% range of new behaviours and actions; otherwise, you just won’t do it.

However, this 10-25% range is simply a guide for tasks that are not directly linked to our highest values. In reality, if you can link a task to your highest values and see clearly how it will help you accomplish what’s truly most important to you, you’ll do it. If you can’t see how it will help fulfill your highest values, you’ll procrastinate, hesitate, and get frustrated in the attempt to do it. By linking a task to your highest values, you’ll both increase the chances of you doing it and also increase the reward you will feel when you accomplish it, a result of producing more dopamine in the brain.

3. Create Something

“For us writers, painters, sculptors, poets, singers, dancers, and other artists, we can identify with this. When we’re in creative mode, we can become hyper-focused. As a result, we can enter a state called flow. Dopamine is the brain chemical that allows us to achieve this state. The lesson is this: take up a hobby or activity in which you actually create something tangible. Try something like arts, crafts, auto repair, drawing, photography, or something else that sounds interesting.” 

Sparking your creative drive is an effective way to increase your potential for feeling great, achieving goals, and inspiring yourself through your accomplishments. However, it can also be a distraction from a feel-bad lifestyle, if it’s not maintained with a purpose in mind. Whenever you’re working on a project, creative or not, that truly inspires you, you’ll activate your ‘flow state,’ where time and space seem to stand still. So how to you determine what it is that truly inspires you?

The most important goal in revealing your most authentic creative energy is to remove the creative energies of other people from your life. So many of us look up to the creations of others, whether works of art or music, and their works or talents take up time and space in our own minds. This isn’t necessarily bad, but it can influence your own beliefs about what you can create. If you compare yourself to others and minimize yourself, you’ll repress your own creative ability. This can affect your dopamine levels, because if you can’t see your own creations as rewarding to you, as much as someone else’s, you’ll feel inferior and incapable.

One very effective way of neutralizing the influence other people have on your mind is to literally look at the negatives or downsides of their accomplishment. This isn’t to practice being a critic, but rather, enable you to de-infatuate with their creative powers and stop minimizing your own. Once you recognize that your creative endeavours can exist on the level of those you admire, through practice (just like they did), you’ll increase your ability to see your own creations as meaningful and rewarding.

 4. Exercise

“Same ‘ole, same ‘ole, we know. We’ve discussed repeatedly the importance and benefits of physical exercise, and we’re just going to add to this list again. So, not only does exercise help us relieve stress, achieve better physical health and make us more productive; it boosts our dopamine levels. More specifically, exercise increases multiple neurotransmitters – serotonin and endorphins, besides dopamine, receive a boost. Here’s something else cool: the exercise needn’t not be arduous. Simply taking a stroll or climbing some stairs will achieve a good dopamine jolt.” 

Exercise is important, but it can also become a crutch or an addiction if it’s not something being integrated into your daily life. Many people go to the gym to work out, yet don’t live a life that requires the body they’re building. Another thing is actually placing a value on exercise itself. Many people buy the gym memberships, yet never use them. So what’s the easiest way to make exercise a part of your life?

There’s a branch of exercise called ‘functional training’ in which exercises are tailored to help you with your daily tasks. This is much more helpful than just ‘workouts,’ because if you can train your body into a state where your daily tasks are not taxing on your energy, you’ll breeze through the day and have more energy at the end of it. Staying in a high energy state instead of being brought down by your daily tasks will help you be more inspired during your day and innately feel more inspired to exercise.

5. Get a Streak Going

“As with creating a checklist, getting a streak going is a great way to increase dopamine levels. For the purpose of this article, a streak is a visual reminder of how many days in a row you’ve achieved something.

Get a calendar specifically for this purpose: write down whatever goal you have and the days of the week or month when they are scheduled. For example, if you work out on Monday, Wednesday and Friday, mark these days on the calendar for the month. As you finish a workout, mark it off on the calendar. Keep a streak going, and you’ll keep the dopamine coming.”

While the ‘streak’ is a useful tool for celebrating accomplishments, it unfortunately has a downside: routine. Doing something enough times becomes a routine, especially if the action isn’t continuously fulfilling to your highest values. To counter this, try adapting the ‘goal’ or ‘action’ in terms of efficiency and effectiveness. By continuously finding ways to improve the performance of the behaviour, over time, you can look back at how many times you’ve done it, but also how much better you’ve become at it. This way, your performance becomes a competition with yourself, which increases your potential for feeling rewarded as you master a skill.

6. Increase Tyrosine

“Of the chemicals that make up dopamine, none are more important than tyrosine. In fact, tyrosine is considered the building block of dopamine. Therefore, it is important that you get enough of this protein. There’s a large list of foods that increase Tyrosine, including: Almonds, Avocados, Bananas, Beef, Chicken, Chocolate, Coffee, Eggs, Green Tea, Watermelon, Yogurt.” 

Food is a reward, not a chore. This is the difference between living to eat and eating to live. While it’s important to utilize foods to your advantage, it’s just as important to recognize that the brain is its own best pharmacy. Few foods actually make it past the blood-brain barrier and this actually includes tyrosine.

“Tyrosine is one of the 22 key amino acids that are used for building proteins around the body. In addition to this, however, it also raises the levels of certain neurotransmitters in the brain, namely dopamine and norepinephrine. These are famous for being ‘feel good’ chemicals that can help boost mood and elevate concentration, making tyrosine a popular nootropic. However, tyrosine is completely incapable of passing the BBB. This way, no matter how much of it you were to take, you’d feel almost no effects.” (source)

The truth is, tyrosine must be bonded with another molecule to make it past the blood-brain barrier, so tyrosine in itself isn’t capable of making significant impacts on the brain. However, through natural digestion and regulating healthy bodily function, it can assist the brain in having to work less on fixing an unhealthy system, which in turn can help increase the potential for dopamine and dopamine related good feelings.

7. Listen to Music

“Do you ever wonder why music makes you happy? I mean, we can be in the dumps one moment but once we put on our favorite jam, we’re swaying and shaking away…feeling pretty good about ourselves too! The reason for this is that listening to music increases dopamine levels. In fact, scientists say that listening to music has the same effect as eating our favorite foods or watching our favorite T.V. show. So, when you’re feeling down, throw on some of your favorite tunes and jam out!”

Listening to music can increase dopamine levels temporarily, but what we’re really looking for is a lasting fulfillment feeling so you can make your daily life enjoyable and productive for your goals. Also, popular music these days is often manufactured in such a way as to prey on your brain’s chemical dependency, making much of music a form of substance addiction.

However, music has been a part of human history since as far as we can see, so its influence on our brain is greatly appreciated. In fact, one of the greatest cultural appreciations throughout history has been music. So, listen to music, but just make sure it’s not the only source of dopamine in your life.

 8. Meditate

“As with exercise, we are discovering more and more benefits to meditation. We are again adding to the list. As we discussed, the human brain is susceptible to a variety of addictions. One other addictive habit that we have is overthinking. In fact, some Buddhists have a phrase for this addiction: ‘monkey mind.’

Overthinking is not merely a distracting habit, it’s also a genuine compulsion that leaves us in a perplexing state, while also having a negative effect on our spiritual development. However, scientists are finally catching up to what Buddhists have known for thousands of years: meditation and mindfulness are essential to a healthy mind.”

Meditation can be a highly effective form of dopamine increase if done properly, as it can weed out the mental influences which may be causing your chemistry to be less than desired. With the intent of reaching a state of self-fulfillment, meditation clears out the mental clutter and replaces it with presence and fulfillment for just being alive. This is a state available to every human and can help assist our daily lives by increasing our awareness of what feels good for us and what we don’t resonate with.

9. Take Supplements

“While there are some great ways to increase dopamine levels, sometimes we’re facing a time crunch. Fortunately, there are natural supplements on the market that have been shown to increase dopamine levels. Here are a few:

Acetyl-l-tyrosine: Another building block of dopamine. A healthy dose of this makes it easier for the brain to produce dopamine.

Curcumin: An active ingredient that’s also common in curry spices and turmeric.

Ginkgo Biloba: A tremendously popular wonder supplement that’s also believed to boost dopamine levels and keep it circulating in the brain longer.

L-theanine: Increases multiple neurotransmitters in the brain, including dopamine. Green tea is a terrific source for this.” (source)

While supplements can impact our dopamine response, they should by no means replace your own inner potential for fulfillment. That responsibility lies with you and you alone. However, with respect to inner wisdom, without knowing what feeling amazing actually feels like, it’s difficult to strive for it as a goal. Supplements can help us get there so we can have a reference point for what our potential can be. The trick is to facilitate change in our lives, enough so that the need for supplementation to feel good is lower than the feel goods we actually experience in our life.

10. Toxic Cleansing

“As miraculous as our bodies are, we do accumulate toxins and bacteria that is bad for us. Endotoxins are the kind that can cause our immune systems to get out of whack, and it also constrains the production of dopamine. Here are a couple tips for helping cleanse the gut of endotoxins: eat fermented food, get enough sleep, and resist the urge to indulge in fatty or sugary foods.”

Whenever you’re not fulfilled in your life, you run the risk of overindulging in sugary and sweet foods in an attempt to temporarily fulfill yourself. However, if you find fulfillment through the challenge and support of your day, you’re more likely to eat for the tasks you’re doing instead of eating just to feel good.

How you eat and how fulfilled you are are directly correlated. If you’re actively enjoying the challenges of your life, you’re more likely to consume foods that serve your highest interests and health, because you see a reason to eat well. Controlling how you eat is less important than finding fulfillment in what you do.

So the next time you find yourself craving that candy bar, ask yourself if there isn’t something else you could eat that could help you find fulfillment. Also, notice what you are doing at the time you’re craving sugar and ask yourself if it’s really something you need to do, or can you delegate it to someone else so you can get back to things that inspire you. By focusing on what inspires and fulfills you, you’ll find yourself actively seeking to better your health without having to really focus on it.

A Quick Important Notice:

The demand for Collective Evolution's content is bigger than ever, except ad agencies and social media keep cutting our revenues. This is making it hard for us to continue.

In order to stay truly independent, we need your help. We are not going to put up paywalls on this website, as we want to get our info out far and wide. For as little as $3 a month, you can help keep CE alive!

SUPPORT CE HERE!

cards

Advertisement
advertisement - learn more

Alternative News

Consider This Before Indulging In Legal Cannabis In Canada

Published

on

In Brief

  • The Facts:

    Cannabis is now legal in Canada for recreational and medicinal use.

  • Reflect On:

    Will the legalization of cannabis change our relationship and habits with cannabis? Should it?

For some Canadians, October 17th is a day they have been anticipating for a long time. For others, it may pass by without much notice. Yet, one thing is for sure. Eventually, virtually all Canadians will be impacted in one way or another by Canada’s decision to legalize cannabis. Parents. Children. Regular Users. Non-users. Teenagers. The Elderly. Those of all ages suffering from illnesses of all kinds.

And not only will this impact the everyday lives of people in Canada, most Canadian institutions will be going through a learning curve and devoting attention to this new phenomenon. The government. Law Enforcement Agencies. Growers and farms. Wholesalers and retailers. Advertisers and marketers. Who in Canada will be able to say they have not been touched by this one way or another, once the intoxicating and healing powers of cannabis become more accessible even than alcohol?

What Will Change

Some changes will happen immediately, some changes will evolve over time. Some people argue that Canada is not yet ready for all the implications of legalizing cannabis at this point, but the prevailing attitude is that things will sort themselves out in an orderly fashion over the next 1-3 years.

Law enforcement: The change in the criminal code means that limited possession of cannabis is no longer a crime, though people who are currently in jail for possession of cannabis are not being automatically let out of jail. Much of law enforcement rhetoric focuses on preventing youth from indulging in cannabis, in a fashion similar to the restrictions on alcohol. More likely, the majority of funds and manpower will be diverted to combating black market enterprises, given that the government now stands to gain $675 million per year in tax revenues from the sale of legal cannabis. Regulations for impaired driving as a result of cannabis consumption look to evolve over time as technologies for measuring impairment like alcohol ‘breathalizers’ improve.

Home Growing: Individuals will be permitted to grow up to four plants for their own use. While the sale of edibles (baked goods, drinks, etc) will not be allowed initially, individuals can make edibles at home for their own use.

Marketing and Retail: The way in which legal cannabis is promoted and sold to the public will likely go through a push-pull transition between advertising regulations and the way wholesalers and retailers will try to get around those regulations to sell their products. The same can probably be said for the business chain as a whole from growth to consumption.

advertisement - learn more

Usage in General: Usage in Canada is bound to increase, simply due to an increase in the availability for those who have not actively sought it out in the past, and the removal of the stigma of its illegality, as well as the social acceptance of the consumption of cannabis which is bound to grow over the next couple of years.

What Will Not Change

There are two things that will not change when cannabis is made legal in Canada on October 17th: cannabis and you.

Cannabis itself is not suddenly safer or better for you than it was before just because it has become legalized. The same decisions you were making on whether or not to indulge in the past still pretty much apply, so ubiquitous was its use despite being illegal. Will regulation make the quality of cannabis you receive better? Not necessarily. It may become more consistent, if less potent, if the quality controls in place are reliable. But remember, black market dealers and sellers had an intrinsic investment in the quality of their product if they were to hope to have regular customers.

By ‘you,’ I am referring to your deepest, truest sense of self, the person you are and who you want to be in the highest vision of yourself. This does not change with any change of regulation in the outer world, and certainly you have to be wary if this change of regulation arbitrarily changes the choices you make and impacts your habits, goals, and dreams.

What To Watch Out For

You may be one who will be inclined to be more open to the personal recreational use of cannabis once it becomes legal. With this comes the possibility of gradually developing a dependence, facilitated by a greater legal and social acceptability. It is important to take notice if recreational use begins to devolve into a catch-all means of escaping from the stress and discomfort of real-life problems, in ways that you get out of the habit of confronting problems and discomfort at their source.

The same can be said about the use of cannabis for medicinal purposes. No doubt, cannabis and CBD oil will be marketed as the healthy sedative for physical ailments and will also be touted as a curative agent for certain types of diseases. While this may be true in some particular cases, you have to be cautious about the claims made by sellers and marketers of the product, whose job is to sell rather than research and diagnose exactly what conditions will benefit from cannabis treatment, and even more particularly what strains of cannabis will work for given conditions.

There is a body of research about the curative effects of cannabis made from an Eastern holistic perspective, which treats each individual case not based on outward symptoms, as Western medicine does, but in terms the particular physiological, emotional and spiritual conditions an individual is in which seen to be at the root of the individual’s ailment. Hence, being wary of marketing practices does not mean avoid cannabis or CBD oil as medicinal treatment for a particular condition, but try to do so in consultation with an unbiased and trusted practitioner/researcher whose motives are healing your particular condition rather than making profits selling cannabis.

The Takeaway

The consumption of cannabis has the potential to be both consciousness-expanding and consciousness-numbing. It does have healing properties but you really have to do your due diligence and use it in a very disciplined way in order to truly gain healing benefits from it rather than getting into the habit of simply escaping from pains and difficulties that are part of a normal life. It is an exciting time for Canadians in that we are now more free to choose something that never should have been illegal to begin with. Let’s make sure this newfound freedom serves us in the best ways as individuals and as a community.

A Quick Important Notice:

The demand for Collective Evolution's content is bigger than ever, except ad agencies and social media keep cutting our revenues. This is making it hard for us to continue.

In order to stay truly independent, we need your help. We are not going to put up paywalls on this website, as we want to get our info out far and wide. For as little as $3 a month, you can help keep CE alive!

SUPPORT CE HERE!

cards

Continue Reading

Awareness

Epigenetic Memories Are Passed Down 14 Successive Generations, Game-Changing Research Reveals

Published

on

In Brief

  • The Facts:

    It's amazing how much information can be passed on to our offspring. Scientist have discovered that our DNA has memories, and these can also be passed down. We are talking about thoughts, feelings, emotions and perceptions.

  • Reflect On:

    Biological changes are shaped by our environment, as well as our thoughts, feelings, emotions and reaction to that environment. Our DNA can be changed with belief, the placebo is a great example. Thoughts feelings and emotions are huge in biology.

This article was written by the Greenmedinfo research group, from Greenmedinfo.com. Posted here with permission.

Until recently, it was believed that our genes dictate our destiny. That we are slated for the diseases that will ultimately beset us based upon the pre-wired indecipherable code written in stone in our genetic material. The burgeoning field of epigenetics, however, is overturning these tenets, and ushering in a school of thought where nurture, not nature, is seen to be the predominant influence when it comes to genetic expression and our freedom from or affliction by chronic disease.

Epigenetics: The Demise of Biological Determinism

Epigenetics, or the study of the physiological mechanisms that silence or activate genes, encompasses processes which alter gene function without changing the sequence of nucleotide base pairs in our DNA. Translated literally to mean “in addition to changes in genetic sequence,” epigenetics includes processes such as methylation, acetylation, phosphorylation, sumolyation, and ubiquitylation which can be transmitted to daughter cells upon cell division (1). Methylation, for example, is the attachment of simple methyl group tags to DNA molecules, which can repress transcription of a gene when it occurs in the region of a gene promoter. This simple methyl group, or a carbon bound to three hydrogen molecules, effectively turns the gene off.

Post-translational modifications of histone proteins is another epigenetic process. Histones help to package and condense the DNA double helix into the cell nucleus in a complex called chromatin, which can be modified by enzymes, acetyl groups, and forms of RNA called small interfering RNAs and microRNAs (1). These chemical modifications of chromatin influence its three-dimensional structure, which in turn governs its accessibility for DNA transcription and dictates whether genes are expressed or not.

We inherit one allele, or variant, of each gene from our mother and the other from our father. If the result of epigenetic processes is imprinting, a phenomenon where one of the two alleles of a gene pair is turned off, this can generate a deleterious health outcome if the expressed allele is defective or increases our susceptibility to infections or toxicants (1). Studies link cancers of nearly all types, neurobehavioral and cognitive dysfunction, respiratory illnessesautoimmune disorders, reproductive anomalies, and cardiovascular disease to epigenetic mechanisms (1). For example, the cardiac antiarrhythmic drug procainamide and the antihypertensive agent hydralazine can cause lupus in some people by causing aberrant patterns of DNA methylation and disrupting signalling pathways (1).

Genes Load the Gun, Environment Pulls the Trigger

Pharmaceuticals, however, are not the only agents that can induce epigenetic disturbances. Whether you were born via vaginal birth or Cesarean section, breastfed or bottle-fed, raised with a pet in the house, or infected with certain childhood illnesses all influence your epigenetic expression. Whether you are sedentary, pray, smoke, mediate, do yoga, have an extensive network of social support or are alienated from your community—all of your lifestyle choices play into your risk for disease operating through mechanisms of epigenetics.

advertisement - learn more

In fact, the Centers for Disease Control (CDC) states that genetics account for only 10% of disease, with the remaining 90% owing to environmental variables (2). An article published in the Public Library of Science One (PLoS One) entitled “Genetic factors are not the major causes of chronic diseases” echoes these claims, citing that chronic disease is only 16.4% genetic, and 84.6% environmental (3). These concepts make sense in light of research on the exposome, the cumulative measure of all the environmental insults an individual incurs during their life course that determines susceptibility to disease (4)

In delineating the totality of exposures to which an individual is subjected over their lifetime, the exposome can be subdivided into three overlapping and intertwined domains. One segment of the exposome called the internal environment is comprised of processes innate to the body which impinge on the cellular milieu. This encompasses hormones and other cellular messengers, oxidative stress, inflammation, lipid peroxidation, bodily morphology, the gut microbiotaaging and biochemical stress (5).

Another portion of the exposome, the specific external environment, consists of exposures including pathogens, radiation, chemical contaminants and pollutants, and medical interventions, as well as dietary, lifestyle, and occupational elements (5). At an even broader sociocultural and ecological level is the segment of the exposome called the general external environment, which may circumscribe factors such as psychological stress, socioeconomic status, geopolitical variables, educational attainment, urban or rural residence, and climate (5).

Transgenerational Inheritance of Epigenetic Change: Endocrine Disruptors Trigger Infertility in Future Generations

Scientists formerly speculated that epigenetic changes disappear with each new generation during gametogenesis, the formation of sperm and ovum, and after fertilization. However, this theory was first challenged by research published in the journal Science which demonstrated that transient exposure of pregnant rats to the insecticide methoxychlor, an estrogenic compound, or the fungicide vinclozolin, an antiandrogenic compound, resulted in increased incidence of male infertility and decreased sperm production and viability in 90% of the males of four subsequent generations that were tracked (1).

Most notably, these reproductive effects were associated with derangements in DNA methylation patterns in the germ line, suggesting that epigenetic changes are passed on to future generations. The authors concluded, “The ability of an environmental factor (for example, endocrine disruptor) to reprogram the germ line and to promote a transgenerational disease state has significant implications for evolutionary biology and disease etiology” (6, p. 1466). This may suggest that the endocrine-disrupting, fragrance-laden personal care products and commercial cleaning supplies to which we are all exposed may trigger fertility problems in multiple future generations.

Transgenerational Inheritance of Traumatic Episodes: Parental Experience Shapes Traits of Offspring

In addition, traumatic experiences may be transmitted to future generations via epigenetics as a way to inform progeny about salient information needed for their survival (7). In one study, researchers wafted the cherry-like chemical acetophenone into the chambers of mice while administering electric shocks, conditioning the mice to fear the scent (7). This reaction was passed onto two successive generations, which shuddered significantly more in the presence of acetophenone despite never having encountered it compared to descendants of mice that had not received this conditioning (7).

The study suggests that certain characteristics of the parental sensory environment experienced before conception can remodel the sensory nervous system and neuroanatomy in subsequently conceived generations (7). Alterations in brain structures that process olfactory stimuli were observed, as well as enhanced representation of the receptor that perceives the odor compared to control mice and their progeny (7). These changes were conveyed by epigenetic mechanisms, as illustrated by evidence that the acetophenone-sensing genes in fearful mice were hypomethylated, which may have enhanced expression of odorant-receptor genes during development leading to acetophenone sensitivity (7).

The Human Experience of Famine and Tragedy Spans Generations

The mouse study, which illustrates how germ cells (egg and sperm) exhibit dynamic plasticity and adaptability in response to environmental signals, is mirrored by human studies. For instance, exposures to certain stressors such as starvation during the gestational period are associated with poor health outcomes for offspring. Women who undergo famine before conception of her offspring have been demonstrated to give birth to children with lower self-reported mental health and quality of life, for example (8).

Studies similarly highlight that, “Maternal famine exposure around the time of conception has been related to prevalence of major affective disorders, antisocial personality disorders, schizophrenia, decreased intracranial volume, and congenital abnormalities of the central nervous system” (8). Gestational exposure to the Dutch Famine of the mid-twentieth century is also associated with lower perceived health (9), as well as enhanced incidence of cardiovascular disease, hypertension, and obesity in offspring (8). Maternal undernourishment during pregnancy leads to neonatal adiposity, which is a predictor of future obesity (10), in the grandchildren (11).

The impact of epigenetics is also exemplified by research on the intergenerational effects of trauma, which illuminates that descendants of people who survived the Holocaust exhibit abnormal stresshormone profiles, and low cortisol production in particular (12). Because of their impaired cortisol response and altered stress reactivity, children of Holocaust survivors are often at enhanced risk for post-traumatic stress disorder (PTSD), anxiety, and depression (13).

Intrauterine exposure to maternal stress in the form of intimate partner violence during pregnancy can also lead to changes in the methylation status of the glucocorticoid receptor (GR) of their adolescent offspring (14). These studies suggest that an individual’s experience of trauma can predispose their descendants to mental illness, behavioral problems, and psychological abnormalities due to “transgenerational epigenetic programming of genes operating in the hypothalamic-pituitary-adrenal axis,” a complex set of interactions among endocrine glands which determine stress response and resilience (14).

Body Cells Pass Genetic Information Directly Into Sperm Cells

Not only that, but studies are illuminating that genetic information can be transferred through the germ line cells of a species in real time. These paradigm-shifting findings overturn conventional logic which postulates that genetic change occurs over the protracted time scale of hundreds of thousands or even millions of years. In a relatively recent study, exosomes were found to be the medium through which information was transferred from somatic cells to gametes.

This experiment entailed xenotransplantation, a process where living cells from one species are grafted into a recipient of another species. Specifically, human melanoma tumor cells genetically engineered to express genes for a fluorescent tracer enzyme called EGFP-encoding plasmid were transplanted into mice. The experimenters found that information-containing molecules containing the EGFP tracer were released into the animals’ blood (15). Exosomes, or “specialized membranous nano-sized vesicles derived from endocytic compartments that are released by many cell types” were found among the EGFP trackable molecules (16, p. 447).

Exosomes, which are synthesized by all plant and animal cells, contain distinct protein repertoires and are created when inward budding occurs from the membrane of multivesicular bodies (MVBs), a type of organelle that serves as a membrane-bound sorting compartment within eukaryotic cells (16). Exosomes contain microRNA (miRNA) and small RNA, types of non-coding RNA involved in regulating gene expression (16). In this study, exosomes delivered RNAs to mature sperm cells (spermatozoa) and remained stored there (15).

The researchers highlight that this kind of RNA can behave as a “transgenerational determinant of inheritable epigenetic variations and that spermatozoal RNA can carry and deliver information that cause phenotypic variations in the progeny” (15). In other words, the RNA carried to sperm cells by exosomes can preside over gene expression in a way that changes the observable traits and disease risk of the offspring as well as its morphology, development, and physiology.

This study was the first to elucidate RNA-mediated transfer of information from somatic to germ cells, which fundamentally overturns what is known as the Weisman barrier, a principle which states that the movement of hereditary information from genes to body cells is unidirectional, and that the information transmitted by egg and sperm to future generations remains independent of somatic cells and parental experience (15).

Further, this may bear implications for cancer risk, as exosomes contain vast amounts of genetic information which can be source of lateral gene transfer (17) and are abundantly liberated from tumor cells (18). This can be reconciled with the fact that exosome-resembling vesicles have been observed in various mammals (15), including humans, in close proximity to sperm in anatomical structures such as the epididymis as well as in seminal fluid (19). These exosomes may thereafter be propagated to future generations with fertilization and augment cancer risk in the offspring (20).

The researchers concluded that sperm cells can act as the final repositories of somatic cell-derived information, which suggests that epigenetic insults to our body cells can be relayed to future generations. This notion is confirmatory of the evolutionary theory of “soft inheritance” proposed by French naturalist Jean-Baptiste Lamarck, whereby characteristics acquired over the life of an organism are transmitted to offspring, a concept which modern genetics previously rejected before the epigenetics arrived on the scene. In this way, the sperm are able to spontaneously assimilate exogenous DNA and RNA molecules, behaving both as vector of their native genome and of extrachromosomal foreign genetic material which is “then delivered to oocytes at fertilization with the ensuing generation of phenotypically modified animals” (15).

Epigenetic Changes Endure Longer Than Ever Predicted

In a recent study, nematode worms were manipulated to harbor a transgene for a fluorescent protein, which made the worms glow under ultraviolet light when the gene was activated (21). When the worms were incubated under the ambient temperature of 20° Celsius (68° Fahrenheit), negligible glowing was observed, indicating low activity of the transgene (21). However, transferring the worms to a warmer climate of 25°C (77° F) stimulated expression of the gene, as the worms glowed brightly (21).

In addition, this temperature-induced alteration in gene expression was found to persist for at least 14 generations, representing the preservation of epigenetic memories of environmental change across an unprecedented number of generations (21). In other words, the worms transmitted memories of past environmental conditions to their descendants, through the vehicle of epigenetic change, as a way to prepare their offspring for prevailing environmental conditions and ensure their survivability.

Future Directions: Where Do We Go From Here?

Taken cumulatively, the aforementioned research challenges traditional Mendelian laws of genetics, which postulate that genetic inheritance occurs exclusively through sexual reproduction and that traits are passed to offspring through the chromosomes contained in germ line cells, and never through somatic (bodily) cells. Effectively, this proves the existence of non-Mendelian transgenerational inheritance, where traits separate from chromosomal genes are transmitted to progeny, resulting in persistent phenotypes that endure across generations (22).

This research imparts new meaning to the principle of seven generation stewardship taught by Native Americans, which mandates that we consider the welfare of seven generations to come in each of our decisions. Not only should we embody this approach in practices of environmental sustainability, but we would be wise to consider how the conditions to which we subject our bodies—the pollution and toxicants which permeate the landscape and pervade our bodies, the nutrient-devoid soil that engenders micronutrient-poor food, the disruptions to our circadian rhythm due to the ubiquity of electronic devices, our divorce from nature and the demise of our tribal affiliations—may translate into ill health effects and diminished quality of life for a previously unfathomed number of subsequent generations.

Hazards of modern agriculture, the industrial revolution, and contemporary living are the “known or suspected drivers behind epigenetic processes…including heavy metals, pesticides, diesel exhaust, tobacco smoke, polycyclic aromatic hydrocarbons, hormones, radioactivity, viruses, bacteria, and basic nutrients” (1, p. A160). Serendipitously, however, many inputs such as exercise, mindfulness, and bioactive components in fruits and vegetables such as sulforaphane in cruciferous vegetables, resveratrol from red grapes, genistein from soy, diallyl sulphide from garlic, curcumin from turmeric, betaine from beets, and green tea catechin can favorably modify epigenetic phenomena “either by directly inhibiting enzymes that catalyze DNA methylation or histone modifications, or by altering the availability of substrates necessary for those enzymatic reactions” (23, p. 8).

This quintessentially underscores that the air we breathe, the food we eat, the thoughts we allow, the toxins to which we are exposed, and the experiences we undergo may persevere in our descendants and remain in our progeny long after we are gone. We must be cognizant of the effects of our actions, as they elicit a ripple effect through the proverbial sands of time.

You can join the Greenmedinfo newsletter here for updates and more information about the world of health

References

1. Weinhold, B. (2006). Epigenetics: The Science of Change. Environmental Health Perspectives, 114(3), A160-A167.

2. Centers for Disease Control and Prevention. (2014). Exposome and Exposomics. Retrieved from https://www.cdc.gov/niosh/topics/exposome/

3. Rappaport, S.M. (2016). Genetic factors are not the major causes of chronic diseases. PLoS One, 11(4), e0154387.

4. Vrijheid, M. (2014). The exposome: a new paradigm to study the impact of environment on health. Thorax, 69(9), 876-878. doi: 10.1136/thoraxjnl-2013-204949.

5. Wild, C.P. (2012). The exposome: from concept to utility. International Journal of Epidemiology, 41, 24–32. doi:10.1093/ije/dyr236

6. Anway, M.D. et al. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308(5727), 1466-1469.

7. Dias, B.G., & Ressler, K.J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 89-98.

8. Stein, A.D. et al. (2009). Maternal exposure to the Dutch Famine before conception and during pregnancy: quality of life and depressive symptoms in adult offspring. Epidemiology, 20(6), doi:  10.1097/EDE.0b013e3181b5f227.

9. Roseboom, T.J. et al. (2003). Perceived health of adults after prenatal exposure to the Dutch famine. Paediatrics Perinatal Epidemiology, 17, 391–397.

10. Badon, S.E. et al. (2014). Gestational Weight Gain and Neonatal Adiposity in the Hyperglycemia and Adverse Pregnancy Outcome Study-North American Region. Obesity (Silver Spring), 22(7), 1731–1738.

11. Veenendaal, M.V. et al. (2013). Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. BJOG, 120(5), 548-53. doi: 10.1111/1471-0528.

12. Yehuda, R., & Bierer, L.M. (2008). Transgenerational transmission of cortisol and PTSD risk. Progress in Brain Research, 167, 121-135.

13. Aviad-Wilcheck, Y. et al. (2013). The effects of the survival characteristics of parent Holocaust survivors on offsprings’ anxiety and depression symptoms. The Israel Journal of Psychiatry and Related Sciences, 50(3), 210-216.

14. Radke, K.M. et al. (2011). Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational Psychiatry, 1, e21. doi: 10.1038/tp.2011.21.

15. Cossetti, C. et al. (2014). Soma-to-Germline Transmission of RNA in Mice Xenografted with Human Tumour Cells: Possible Transport by Exosomes. PLoS One, https://doi.org/10.1371/journal.pone.0101629.

16. Zomer, A. et al. (2010). Exosomes: Fit to deliver small RNA. Communicative and Integrative Biology, 3(5), 447–450.

17. Balaj, L. et al. (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Natural Communications, 2, 180.

18. Azmi, A.S., Bao, B., & Sarkar, F.H. (2013). Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Review, 32, 623-643

19. Poliakov, A. et al. (2009). Structural heterogeneity and protein composition of exosomes-like vesicles (prostasomes) in human semen. Prostate, 69, 159-167.

20. Cheng, R.Y. et al. (2004) Epigenetic and gene expression changes related to transgenerational carcinogenesis. Molecular Carcinogenesis, 40, 1–11.

21. Klosin, A. et al. (2017). Transgenerational transmission of environmental information in C. elegans. Science, 356(6335).

22. Lim, J.P., & Brunet, A. (2013). Bridging the transgenerational gap with epigenetic memory. Trends in Genetics, 29(3), 176-186. doi: 10.1016/j.tig.2012.12.008

23. Choi, S.-W., & Friso, S. (2010). Epigenetics: A New Bridge between Nutrition and Health Advances in Nutrition: An International Review Journal, 1(1), 8-16. doi:10.3945/an.110.1004.

A Quick Important Notice:

The demand for Collective Evolution's content is bigger than ever, except ad agencies and social media keep cutting our revenues. This is making it hard for us to continue.

In order to stay truly independent, we need your help. We are not going to put up paywalls on this website, as we want to get our info out far and wide. For as little as $3 a month, you can help keep CE alive!

SUPPORT CE HERE!

cards

Continue Reading

Awareness

Brain Imaging Shows Autistic Brains Contain HIGH Amounts of Aluminum

Published

on

In Brief

  • The Facts:

    A study published early in 2018 identified very high amounts of aluminum lodged in the brains of multiple people with autism.

  • Reflect On:

    We know little about where the heavy metals used as adjuvants in vaccines end up in the body. We now know that injected aluminum doesn't exit the body like aluminum intake from other sources. When injected, it ends up in the brain.

A study published earlier in 2018 should have made headlines everywhere, as it discovered historically high amounts of aluminum in autistic brains. The study was conducted by some of the worlds leading scientists in the field.

Five people were used in the study, four males and one female, all between the ages of 14-50. Each of their brains contained unsafe and high amounts of aluminum compared to patients with other diseases where high brain aluminum content is common, like Alzheimer’s disease, for example.

Of course, this caused people to downplay the study, citing a low sample group, but that’s not entirely a valid argument given the reason why this study was conducted. As cited in the study above, recent studies on animals, published within the past few years, have supported a strong connection between aluminum, and aluminum adjuvants used in human vaccinations, and Autism Spectrum Disorder (ASD.)

Studies have also shown that injected aluminum does not exit the body, and can be detected inside the brain even a year after injection. That being said, when we take aluminum in from sources such as food, the body does a great job of getting it out, but there is a threshold. It’s important to acknowledge that the aluminum found in the brain, could be due to the presence of aluminum adjuvants in vaccines. This latest study also identified the location of aluminum in these tissues, and where they end up. This particular study was done on humans, which builds upon, and still supports, the findings of the animal studies.

This is also important because the majority of studies that previously examined human exposure to aluminum have only used hair, blood and urine samples. The study also makes a clear statement regarding vaccines, stating that “Paediatric vaccines that include an aluminum adjuvant are an indirect measure of infant exposure to aluminum and their burgeoning use has been directly correlated with increasing prevalence of ASD.”

 Aluminum, in this case, was found in all four lobes of the brain.

advertisement - learn more

The aluminum content of brain tissues from donors with a diagnosis of ASD was extremely high (Table 1). While there was significant inter-tissue, inter-lobe and inter-subject variability the mean aluminium content for each lobe across all 5 individuals was towards the higher end of all previous (historical) measurements of brain aluminium content, including iatrogenic disorders such as dialysisencephalopathy[13][15][16][17][18][19]. All 4 male donors had significantly higher concentrations of brain aluminum than the single female donor. We recorded some of the highest values for brain aluminum content ever measured in healthy or diseased tissues in these male ASD donors

We Know, And Have Known, Aluminum Is Not Safe, Yet We Ignore It

When we talk about the ‘safe’ amount of aluminum here, there is no such thing. Aluminum is extremely toxic to any biological process, it’s not meant for us which is why it stayed deep within the Earth until we took it out. It has no place within us, and that’s simply due to the fact that it causes nothing but havoc. This makes it odd that we would put them in vaccinations despite the fact that for 100 years there has been no appropriate safety testing.

Aluminum is an experimentally demonstrated neurotoxin and the most commonly used vaccine adjuvant. Despite almost 90 years of widespread use of aluminum adjuvants, medical science’s understanding about their mechanisms of action is still remarkably poor. There is also a concerning scarcity of data on toxicology and pharmacokinetics of these compounds. In spite of this, the notion that aluminum in vaccines is safe appears to be widely accepted. Experimental research, however, clearly shows that aluminum adjuvants have a potential to induce serious immunological disorders in humans.

The quote above comes from a study published in 2011, it’s 2018 now and we’ve come along way in our understanding. We are starting to see even more research confirming the statement above.

Almost every study you read regarding previous studies on aluminum adjuvants within vaccines emphasized how the nature of its bioaccumulation is unknown, and a serious matter. We now know that it goes throughout the body, into distant organs eventually ends up in the brain.

Another fairly recent study from 2015 points out:

Evidence that aluminum-coated particles phagocytozed in the injected muscle and its draining lymph notes can disseminate within phagocytes throughout the body and slowly accumulate in the brain further suggests that alum safety should be evaluated in the long term.(source)

The pictures below come from the recent 2018 study and show ‘bright spots’ that indicate heavy metals in the brain.

 

The more recent study discussed in this article is adding to that evidence. Below you can watch one of the most recent interviews with Dr. Eric Exly, one of the world’s foremost leading authors on the subject, and one of the authors of this most recent study. He is a Biologist (University of Stirling) with a Ph.D. in the ecotoxicology of aluminum. You can read more about his background here.

Take Away

People need to understand that despite media bullying, it’s ok to question vaccine safety, and there is plenty of reason to. There are many concerns, and heavy metals are one of them. In fact, the persistence and abundant presence of heavy metals in our environment, foods and medications is a concern, one that has been the clear cause for a variety of health ailments, yet it’s one that’s hardly addressed by the medical industry.

You can detox from this with items such as Spirulina, and waters that contain a high Silica content. There are studies that show various methods of detoxing can be used to get this lodged aluminum, or some of it, out of your body, organs and brain. This is where educating yourself regarding the medicinal value of food and nutrition is a key Perhaps this can be a motivation to better your diet, especially if you have, are someone, or know someone with an ASD diagnosis.

A Quick Important Notice:

The demand for Collective Evolution's content is bigger than ever, except ad agencies and social media keep cutting our revenues. This is making it hard for us to continue.

In order to stay truly independent, we need your help. We are not going to put up paywalls on this website, as we want to get our info out far and wide. For as little as $3 a month, you can help keep CE alive!

SUPPORT CE HERE!

cards

Continue Reading
advertisement - learn more
advertisement - learn more

Video

EL

We Need Your Support

 

Censorship is cutting our revenue in a big way. If just 5% of people seeing this supported our Conscious Media Campaign, we'd be able to fund a TRUE investigative team INSTANTLY. Your support truly matters! Help support conscious media.

Thanks, you're keeping conscious media alive.